Metrics 设计的最佳实践
1 如何确定需要测量的对象
在具体设计 Metrics 之前,首先需要明确需要测量的对象。需要测量的对象应该依据具体的问题背景、需求和需监控的系统本身来确定。
思路1:从需求出发
Google 针对大量分布式监控的经验总结出四个监控的黄金指标,这四个指标对于一般性的监控测量对象都具有较好的参考意义。这四个指标分别为:
- 延迟:服务请求的时间。
- 通讯量:监控当前系统的流量,用于衡量服务的容量需求。
- 错误:监控当前系统所有发生的错误请求,衡量当前系统错误发生的速率。
- 饱和度:衡量当前服务的饱和度。主要强调最能影响服务状态的受限制的资源。例如,如果系统主要受内存影响,那就主要关注系统的内存状态。
我认为,以上四种指标,其实是为了满足四个监控需求:
- 反映用户体验,衡量系统核心性能。如:在线系统的时延,作业计算系统的作业完成时间等。
- 反映系统的服务量。如:请求数,发出和接收的网络包大小等。
- 帮助发现和定位故障和问题。如:错误计数、调用失败率等。
- 反映系统的饱和度和负载。如:系统占用的内存、作业队列的长度等。
除了以上常规需求,还可根据具体的问题场景,为了排除和发现以前出现过或可能出现的问题,确定相应的测量对象。比如,系统需要经常调用的一个库的接口可能耗时较长,或偶有失败,可制定 Metrics 以测量这个接口的时延和失败数。
思路2:从需监控的系统出发
另一方面,为了满足相应的需求,不同系统需要观测的测量对象也是不同的。在 官方文档 的最佳实践中,将需要监控的应用分为了三类:
- 线上服务系统(Online-serving systems):需对请求做即时的响应,请求发起者会等待响应。如 web 服务器。
- 线下计算系统(Offline processing):请求发起者不会等待响应,请求的作业通常会耗时较长。如批处理计算框架 Spark 等。
- 批处理作业(Batch jobs):这类应用通常为一次性的,不会一直运行,运行完成后便会结束运行。如数据分析的 MapReduce 作业。
对于每一类应用其通常情况下测量的对象是不太一样的。其总结如下:
- 线上服务系统:主要有请求、出错的数量,请求的时延等。
- 线下计算系统:最后开始处理作业的时间,目前正在处理作业的数量,发出了多少 items, 作业队列的长度等。
- 批处理作业:最后成功执行的时刻,每个主要 stage 的执行时间,总的耗时,处理的记录数量等。
除了系统本身,有时还需监控子系统:
- 使用的库(Libraries): 调用次数,成功数,出错数,调用的时延。
- 日志(Logging):计数每一条写入的日志,从而可找到每条日志发生的频率和时间。
- Failures: 错误计数。
- 线程池:排队的请求数,正在使用的线程数,总线程数,耗时,正在处理的任务数等。
- 缓存:请求数,命中数,总时延等。
- …
最后的测量对象的确定应结合以上两点思路确定。
2 如何选用 Vector
选用 Vec 的原则:
- 数据类型类似但资源类型、收集地点等不同
- Vec 内数据单位统一
例子:
- 不同资源对象的请求延迟
- 不同地域服务器的请求延迟
- 不同 http 请求错误的计数
- …
此外,官方文档 中建议,对于一个资源对象的不同操作,如 Read/Write、Send/Receive, 应采用不同的 Metric 去记录,而不要放在一个 Metric 里。原因是监控时一般不会对这两者做聚合,而是分别去观测。
不过对于 request 的测量,通常是以 Label 做区分不同的 action。
3 如何确定 Label
根据2,常见 Label 的选择有:
- resource
- region
- type
- …
确定 Label 的一个重要原则是:同一维度 Label 的数据是可平均和可加和的,也即单位要统一。如风扇的风速和电压就不能放在一个 Label 里。
此外,不建议下列做法:
my_metric{label=a} 1 my_metric{label=b} 6 my_metric{label=total} 7
即在 Label 中同时统计了分和总的数据,建议采用 PromQL 在服务器端聚合得到总和的结果。或者用另外的 Metric 去测量总的数据。
4 如何命名 Metrics 和 Label
好的命名能够见名知义,因此命名也是良好设计的一环。
Metric 的命名:
- 需要符合 pattern: (a-zA-Z:)(a-zA-Z0-9:)*
- 应该包含一个单词作为前缀,表明这个 Metric 所属的域。如:
- prometheus_notifications_total
- process_cpu_seconds_total
- ipamd_request_latency
- 应该包含一个单位的单位作为后缀,表明这个 Metric 的单位。如:
- http_request_duration_seconds
- node_memory_usage_bytes
- http_requests_total (for a unit-less accumulating count)
- 逻辑上与被测量的变量含义相同。
- 尽量使用基本单位,如 seconds,bytes。而不是 Milliseconds, megabytes。
Label 的命名:
- 依据选择的维度命名,如:
- region: shenzhen/guangzhou/beijing
- owner: user1/user2/user3
- stage: extract/transform/load
5 基本单位
prometheus
没有任何硬编码的单位。为了更好的兼容性,应该使用基本单元。下面列出了一些带有基本单位的指标家族。但这个清单并不详尽。
家族 | 基本单位 | 备注 |
---|---|---|
Time | 秒 | |
Temperature | 摄氏度 | 由于实际原因,摄氏温度比开尔文温度更受欢迎。 |
Length | 米 | |
Bytes | 字节 | |
Bits | 字节 | 为了避免不同指标混淆,总是使用字节,即使在比特位更常见的场景也是如此。 |
Percent | 比率 | 值从0 - 1 ,而不是从0 - 100。 ratio 仅用作disk_usage_ratio 等名称的后缀。通常的指标名称遵循模式A_per_B 。 |
Voltage | 伏特 | |
Electric current | 安培 | |
Energy | 焦耳 | |
Mass | 克 | “克”是首选而不是“千克”,以避免kilo 前缀的问题。 |